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APPENDIX A: DETAILS ABOUT CALIBRATION

A.1 Detailed time use data

Figure A.1 shows how young and old individuals divide their time between sleep, work,
and leisure over time and how this has changed over time. As the figure shows, the
changes over time are very small.

Figure A.2 shows how many minutes of the average working day is spent at home
(112 minutes on average) and outside home, mainly at the workplace (255 minutes on
average). As Figure A.2 also shows, there is no clear time trend in how large fraction of
the working time that is spent at home. The slight downward trend in work done outside
home can mainly be attributed to a compositional effect: the fraction of old individuals
has increased slightly during this time period (21% in 2003 compared to 27% in 2018),
and they work less, especially outside the home.

A.2 In-puBlic vs. in-priVate leisure

This section provides more details on leisure time spent in the two categories in-puBlic
(socially intense), and in-priVate (not socially intense).
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A full day is 24 · 60 = 1,440 minutes.
Source: ATUS.

FIGURE A.1. Time spent on sleep, work, and leisure over time.
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FIGURE A.2. Average minutes per day spent working home vs. not from home.

We classify activities as not socially intense if it took place in the respondent’s home
or yard. Moreover, we classify personal care activities (e.g., grooming and personal activ-
ities) coded with location code “Blank” in the survey as not socially intense. Lastly, 0.3%
of the observations in the data are coded with “Unspecified place”. For these observa-
tions, we code those where it is plausible that the activity took place in the home as not
socially intense.1

The socially intense activities are consequently the activities that took place out-
side home. Examples of locations for these activities include someone else’s home,
store/mall, restaurant or bar, and gym/health club.

To understand what these broad categorizations mean in practice, Figure A.3 shows
socially intense leisure and not-socially-intense leisure broken down on a finer level. For

1As an example, we code the activity “Caring for and helping household children” as not socially intense,
while “Participating in sports” is classified as socially intense.

http://qeconomics.org


Submitted to Quantitative Economics Appendix: Integrated epi-econ assessment 3

0 20 40 60
Minutes per day

Data codes
Telephone calls

Volunteer activities
Religious and spiritual act

Sports, exercise, recreation
Socializing, relaxing, leisure

Eating and drinking
Civic obligations

Prof/personal care services
Consumer purchases

Helping non-HH members
Helping HH members

HH Activities
Personal care

young
old

(a) Socially intense in-puBlic leisure

0 100 200 300 400
Minutes per day

Data codes
Telephone calls

Volunteer activities
Religious and spiritual act

Sports, exercise, recreation
Socializing, relaxing, leisure

Eating and drinking
Civic obligations

Prof/personal care services
Consumer purchases

Helping non-HH members
Helping HH members

HH Activities
Personal care

young
old

(b) Not socially intense in-priVate leisure

“Data codes” refer to observations where the respondent couldn’t remember or
refused to answer. A full day is 24 · 60 = 1440 minutes. Source: ATUS, 2018.

FIGURE A.3. Average minutes per day spent in socially intense leisure activities and not socially
intense activities, by two-digit categories (includes associated traveling).

instance, the category “Eating and drinking” shows up in both types of leisure: young
spend on average 34 minutes per day eating and drinking outside their home (socially
intense in-puBlic leisure), and 35 minutes on eating and drinking at home (not-socially-
intense in-priVate leisure). The largest category for leisure is “Socializing, relaxing, and
leisure”, both when it comes to socially intense leisure and not-socially-intense leisure.
On a finer classification level, the most common subcategory within “Socializing, relax-
ing, and leisure” for the in-puBlic type is “Socializing and communicating”, while it for
the in-priVate type is “Relaxing and leisure”, which roughly translates to watching tele-
vision at home.

A.3 Sector classification

Table A.1 gives an example of how different sectors are classified as being fully, to a high
extent, somewhat, or not at all employing people who are in social contact with cus-
tomers.

A.4 Robustness of choice of outer elasticity

To get more insights on how the outer elasticity in the nested CES utility function, ε,
impacts the time allocations in a model with a pandemic, we evaluate how the optimal
time allocations of the young and old vary with the cost of an infection, using different
values of ε.

Recall that the flow utility for an individual is given by

u(cB , hB , cV , hV ) = logCES(c̃B , c̃V ;λ, ε) + u, (1)

c̃B = CES(cB , hB ;λB , εB), (2)

c̃V = CES(cV , hV ;λV , εV ). (3)

http://qeconomics.org
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TABLE A.1. Illustrative example of sector classification.

2017 NAICS Description Employees Active sector
Thousands production?

211 Oil and gas extraction 683.3 No
· · ·
441 Motor vehicle and parts dealers 2,021.2 No
445 Food and beverage stores 3,087.1 High extent
452 General merchandise stores 3,104.9 High extent
· · ·
711 Performing arts, spectator sports, and related industries 506.0 Yes
· · ·

7131 Amusement parks and arcades 211.0 Yes
7132 Gambling industries (except casino hotels) 120.4 High extent
· · ·
721 Accommodation 2,028.4 Yes
722 Food services and drinking places 11,926.3 Yes
· · ·

8121 Personal care services 727.8 Yes
8122 Death care services 137.1 No
· · ·

- Non-agriculture self-employed 9,453.4 Somewhat

Total number of employees 161,037.7

The nested CES structure captures that to consume a good, both social and non-
social, involves spending time with the good.

For concreteness, assume that eight percent of the population is infected, and the
rest is susceptible. The infected are evenly spread out in the young and the old popula-
tion. Moreover, assume that the cost of an infected old is 50 times the cost of an infected
young (this might sound high, but as shown in the full dynamic model this outcome is
not at all extreme compared to the outcome in the rational expectations competitive
equilibrium).

Figure A.4 shows the time allocations for the young and the old as a function of the
cost of a young infection for our baseline scenario ε = 1.0. As the cost of infections in-
creases, individuals reallocate their time. In this example, very soon the old stop working
in the workplace and all work is done from home. They also gradually reduce their in-
puBlic leisure time.

In Figure A.5 we show the corresponding graphs from the same experiment, but set-
ting ε= 0.4.2 Here we see that the reallocation pattern for the old is qualitatively differ-
ent. When it becomes very costly to be infected, they cut down on work in the workplace
first, just as before. Then the old cut down on leisure in-puBlic, also as before. However,
with an elasticity below one, the composite in-puBlic good and the composite in-priVate
good are complements, and therefore the marginal utility from in-priVate leisure falls.
Thus, if the old are prevented from enjoying in-puBlic leisure, their time spent watching
TV will eventually fall as well. This implication we argue is implausible, and therefore
advice against an ε < 1.

Figure A.6 shows the same experiment setting ε = 1.3. The in-puBlic and the in-
priVate composite goods are now substitutes, and thus the reallocation from in-puBlic
leisure to in-priVate leisure is somewhat stronger than in our base case. However, the

2Using another outer elasticity means that we also have to recalibrate the other remaining parameters,
which we also do.

http://qeconomics.org
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FIGURE A.4. Time allocations as a function of the cost of new infections with ε= 1.0 under the
assumption that eight percent of the population is infected and the remaining population sus-
ceptible. The cost of a new infection for the old is assumed to be 50 times as large as the cost for
the young, ξT

o
= 50ξT

y
.

difference compared to our base case is relatively small and does not translate into any
meaningful difference in results from the full model, as we show in the next subsection.

A.4.1 Baseline scenario with a higher outer elasticity To get a better understanding of
how the results differ in the baseline scenario if we choose a higher outer elasticity we
run the baseline with a higher value of ε and contrast the results to the main specifica-
tion with ε set to unity.

Figure A.7 shows the time allocation of the old in two versions of the competitive
equilibrium in the baseline scenario: subfigure A.7a shows the case with ε = 1.0 (in
which log(c̃iB) and log(c̃iV ) are additively separable) and subfigure A.7b shows the case
with ε = 1.8 (thus with imperfect substitutability between the c̃iB and c̃iV ). Figure A.7a
thereby replicates Figure 3b in the main paper. We focus on the behavior of the old, since
the previous subsection showed that the behavior of the young is much less affected and
changes less during the epidemic.

When the two composite goods are (imperfect) substitutes, the old agents choose to
isolate themselves to a higher extent during the peak of the epidemic, and spend virtu-
ally all leisure time on the in-priVate type during the peak of the epidemic. However, with
higher substitutability between the two composite goods the utility cost from shielding
is lower, which is shown in Figure A.8. Subfigure A.8a shows the flow utility during the
course of the epidemic in the case of ε = 1.0 (replicating Figure 6a in the main paper)
while subfigure A.8b shows the case of ε= 1.8. As the figures show, the utility loss for the
old is not as severe in the case of ε= 1.8, even though the main picture remains: the old
suffer more than the young during the epidemic.

For the planner, the differences are less stark. Figure A.9 shows corresponding graphs
for the planner solution, and as the figures show, the planner does reallocate the time

http://qeconomics.org
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(a) Young, ε= 0.4.
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(b) Old, ε= 0.4.

FIGURE A.5. Time allocations as a function of the cost of new infections with ε= 0.4 under the
assumption that eight percent of the population is infected and the remaining population sus-
ceptible. The cost of a new infection for the old is assumed to be 50 times as large as the cost for
the young, ξT
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(a) Young, ε= 1.3.
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(b) Old, ε= 1.3.

FIGURE A.6. Time allocations as a function of the cost of new infections with ε= 1.3 under the
assumption that eight percent of the population is infected and the remaining population sus-
ceptible. The cost of a new infection for the old is assumed to be 50 times as large as the cost for
the young, ξT

o
= 50ξT

y
.

spent in the different types of leisure, but not as much. In the planner scenario, the opti-
mal allocation is still to let the old enjoy both in-priVate and some in-puBlic leisure also
during the peak of the epidemic.

Consequently, the infection curves for the planner look very similar for the two
choices of ε, the elasticity between the c̃iB and c̃iV bundles. Figure A.10 shows the infec-
tion curves for the planner allocations in the two cases, and as can be seen, the planner
still adopts a “protect the healthcare system” strategy.

http://qeconomics.org
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(a) ε= 1.0
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(b) ε= 1.8

FIGURE A.7. Time allocation in rational-expectation competitive equilibrium for the old, base-
line scenario. Contrasting two cases with different elasticity between the c̃iB and c̃iV bundles.
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(a) Baseline calibration, ε= 1.0.
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(b) Higher substitutability, ε= 1.8.

FIGURE A.8. Flow utility in the rational-expectations competitive equilibrium, baseline sce-
nario. Contrasting two cases with different elasticities between the c̃iB and c̃iV bundles.

In general, the main insights from the model remain even with a higher substi-

tutability between the in-puBlic and in-priVate bundles, even though the precise al-

locations for both the rational-expectations scenario and the planner solution change

slightly, as shown in this section. Also the exact thresholds for when the planner so-

lutions qualitatively shift (for instance precisely which severity of overcrowding of the

hospitals that is required for the planner to induce a speed-up-the-infection strategy,

or how soon the cure must be expected to induce a lock-down), depends on the substi-

tutability but the trade-offs and insights remain. Clearly, with an extremely high substi-

tutability between the in-puBlic and in-priVate consumption/leisure bundles, the pic-

ture would be different and the insights may change more drastically. However, the diffi-

culty in practice during the Covid-19 epidemic to get people to stay at home shows that

a close to perfect substitutability does not seem to be the empirically relevant case.

http://qeconomics.org
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(a) ε= 1.0
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(b) ε= 1.8

FIGURE A.9. Time allocation in the planner solution for the old, baseline scenario. Contrasting
two cases with different elasticity between the c̃iB and c̃iV bundles.
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(a) ε= 1.0
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(b) ε= 1.8

FIGURE A.10. The evolution of the epidemic (fraction of population currently infected) in the
planner solution. Contrasting two cases with different elasticity between the c̃iB and c̃iV bundles.

A.5 Calibration of elasticites

To pin down our choice of εB and εB , the elasticities for the consumption-leisure bun-
dle in the socially intense B sector and the non-social V-sector respectively, we put the
two following restrictions on our utility function: a) the income effect should dominate
the substitution effect in a realistic way, and b) the young should spend a larger fraction
of their leisure in the socially intense B activity. These two restrictions narrow down the
set of εB/εV we can choose from substantially. Figure A.11 shows a number of combina-
tions of elasticities that satisfies those two restrictions. In the graph, combinations that
lie “south-east” of the marked area are combinations for which the second requirement
is not fulfilled.

As our base case, we pick εB = 0.41 and εV = 0.8, but note that for basically all per-
missible combinations, we have that εB < εV and both elasticities being smaller than

http://qeconomics.org
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FIGURE A.11. Combinations of εB and εV that satisfy both criterion a) and b). Criterion a) A real-
istic income/substitution effect is defined as if a TFP increase of 2% leads to hours worked falling
by between 0.38 and 0.42 percent. Criterion b) Young spend a larger fraction of their leisure time
in the socially intense type than the old do.

1. This means that for any of the combinations we could choose as an alternative, the
model behaves extremely similar and no insights of the working of the economy change.

To understand why these elasticities affect how leisure is distributed between the
socially intense B type and the not-social V type, think about a marginal increase in
leisure: how should it be split up between the two types of leisure? The answer is of
course so that the marginal utilities of the two types still are equalized. The marginal
utility with respect to the socially intense B type of leisure is given by:

uhB
=

∂u

∂ũB
· ∂ũB
∂hB

=
∂u

∂ũB
·

(
λBc

εB−1
εB

B + (1− λB)h

εB−1
εB

B

) 1
εB−1

(1− λB)h
− 1

εB
B

Thus, the elasticity of the marginal utility with respect to leisure (i ∈ {B,V }):

d loguhi

d loghi
=

d

d loghi

[
log

∂u

∂ũi
+ log(1− λi)

+
1

εi − 1
log

(
λic

εi−1
εi

i + (1− λi)h
εi−1
εi

i

)
− 1

εi
loghi

]

=
1

εi

 (1− λi)h
εi−1
εi

i

λic
εi−1
εi

i + (1− λi)h
εi−1
εi

i

− 1

εi
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=− 1

εi

1−
(1− λi)h

εi−1
εi

i

λic
εi−1
εi

i + (1− λi)h
εi−1
εi

i


Hence, the elasticity of the marginal utility with respect to leisure depends on the

CES elasticity (and the consumption/leisure terms within the respective bundles). The
relative size of the terms in the bundles are primarily determined by the other exoge-
nously set calibration targets and do not depend on εi to any larger extent. The relation-
ship between εB and εV is therefore crucial for determining where to spend a marginal
increase in leisure. With εB < εV , a marginal increase in leisure is spent proportionally
more on the not-social V good (had the bundles been exactly the same).

APPENDIX B: ADDITIONAL RESULTS

B.1 Time allocations from the extended model

Figure B.1 shows the time allocations in the rational expectations competitive equilib-
rium from the extended model with waning immunity, exogenous seasonality, and three
types. As can be seen, the young do not adjust their behavior to any larger extent, while
the old and the very old do. The old shifts to working at home and only have in-priVate
leisure, while the very old are so unproductive that they do not work, but only cut down
on in-puBlic leisure.

Figure B.2 shows the corresponding graphs for the planner’s allocation. In this sce-
nario, the young adjust their time to a larger extent, and cut down on their time in the
workplace and in-puBlic leisure. This allows for more in-puBlic leisure for the old and
the very old.

B.2 Flu simulations, more details

To simulate a “seasonal flu” we set the basic reproduction number, R0, to 1.3, use a death
rate of 0.00045, and a recovery rate of 1/10. This corresponds to a regular normal flu
season, and not to a year with a particularly severe instance of the flu, or a year with a
pandemic influenza (such as the H1N1/09 virus in 2009).

A systematic review of several published estimates of the basic reproduction number
for the seasonal influenza, conducted by Biggerstaff et al. (2014), found that the median
estimate of R0 for the seasonal flu was 1.3, so we use this number directly.

The infection fatality rate for a seasonal flu is more difficult to estimate, and it also
varies substantially from year to year. A commonly cited case fatality rate for the sea-
sonal flu is 0.1% (Faust and Del Rio (2020)). According to WHO, the infection fatality
rate (i.e., the proportion of deaths among all infected individuals, including all asymp-
tomatic and undiagnosed subjects) is usually well below 0.1%.3 In order to be conser-
vative, we set the infection fatality rate to less than half of this: 0.045%. An important
difference between a regular influenza and covid-19 is also how different groups in the

3See https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-similarities-and-
differences-with-influenza, downloaded 2020/10/27.

http://qeconomics.org
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(a) Young
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(b) Old
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(c) Very old

FIGURE B.1. Time allocation in the competitive equilibrium, extended model.

population are affected. According to Petersen et al. (2020), 80% of the deaths from the
pandemic influenza in 2009 were below the age of 65, but for a seasonal flu the deaths
are more skewed towards the elderly, but not as much as for covid-19. We set an equal
death rate for the young and for the old as defined in our model.

According to Petersen et al. (2020), the proportion of infected individuals requiring
intensive care is also substantially lower for a pandemic influenza than for covid-19 (less
than a sixth). We do not observe any particular overcrowding problems in hospitals dur-
ing a seasonal flu. To be conservative, we choose to remove the overburdening of the
healthcare system effect, and have the same death rate regardless of the number of in-
fected in the economy.

Further, we assume that on average it takes less time to recover from a flu than from
covid-19. For the flu, we use 10 days to recover on average.

To ensure that our estimates of the reproduction number, the infection fatality rate,
and estimated time for recovery are plausible, we simulate the myopic model and the
rational expectation model to see what the model predicts in terms of deaths. The result
is 1.9 (myopic) or 1.8 (rational expectations) deaths per 10,000 people, which rescaled
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(b) Old
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FIGURE B.2. Time allocation in the planner’s solution, extended model.

to the full population is 1.5 (myopic) and 1.4 (rational expectations) deaths per 10,000
people.4

Rolfes et al. (2018) estimate the burden of seasonal influenza in the US and find that
the annual deaths due to the seasonal flu in the period between the 2010/2011 season
and the 2015/2016 season can have varied between 16,000 and 76,000. Using the average
of this low and high number (and approximating the US population to 320 million) gives
us a death toll of 1.4 per 10,000 individuals. Another estimate is given by Dushoff et al.
(2006), who find an annual average number of deaths in the US from influenza of 41,400
over the period 1979 to 2001. Approximating the US population to 280 million (approxi-
mate average during this time period) gives 1.5 deaths per 10,000. A third set of estimates
of the total number of deaths per year due to the seasonal flu is provided by CDC.5 The
median of their estimated number of deaths for the period 2010/2011 to 2018/2019 is
1.2 deaths per 10,000 people. Compared to these numbers, our simulated flu is slightly
worse than the median flu, but not as severe as for instance the 2014/2015 flu (with 1.6

4Our model does not include individuals below the age of 15, who constitute 21.4% of the population.
We assume for simplicity that there are no deaths in this group.

5See https://www.cdc.gov/flu/about/burden/index.html, downloaded 2020/10/21.
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deaths per 10,000) or the 2017/2018 flu (with 1.9 deaths per 10,000). Hence, our implied
estimate of 1.4− 1.5 deaths per 10,000 people during a normal flu year seems to be well
in line with what is observed .

In sum, the flu we simulate corresponds to a reasonably normal seasonal flu, and
not a year with a particularly severe flu. It is also far from a pandemic influenza such as
the 2009 case. Note also that we do not take into account the burden of a seasonal flu in
terms of people being sick and having to stay at home in bed for days.

Results seasonal flu Figure B.3 compare the number of deaths, the output loss and
the flow utility loss for a seasonal flu in the myopic market allocation, the rational-
expectations competitive equilibrium, and the social planner’s allocation, assuming the
lower value of a statistical life. Figure B.5 shows the evolution of infected individuals in
the three scenarios, and as the figures show, the evolution is very similar across scenar-
ios.

A social planner would want to decrease output by 1.9 percent during the second
quarter of the epidemic, as can be seen in Figure B.3b, and the annual drop in output
is 1.1 percent. However, this translates into a smaller fall in flow utility, as Figure B.3c
shows.

Figure B.4 shows the corresponding results assuming the higher estimate for the
value of a statistical life. With the high value of a statistical life, the social planner would
want to lower output by 4.0 percent during the second quarter, and the annual drop in
output is 2.8 percent. This, as far as we can tell, is not how actual policy makers have re-
acted historically. Thus, although we cannot say whether a chosen value of a statistical
life is the correct one, the results from the flu simulations indicate that a value from the
lower range is more in line with observed policy actions.

B.3 SARS simulations, more details

To test our model with an epidemic that is substantially worse than covid-19, we use the
SARS virus of 2002/2003 (severe acute respiratory syndrome coronavirus, SARS-CoV).

For the transmissability of SARS we use estimates from Petersen et al. (2020) and set
R0 to 2.4. An age-related increase in mortality was observed also for SARS-CoV (although
with a far greater case fatality). In Hong Kong, the case fatality due to SARS-CoV was
0% for age group 0-24 years, 6% for those aged 25-44 years, 15% for those aged 45-64
years, and 52% for people who were 65 years and older (Petersen et al. (2020)). We set
the infection fatality rate to 8% for the group we define as young (15 to 60) and 45% for
the group we define as old (above 60).6

SARS also has a slightly faster incubation period, so for average number of days until
recover we use 12 days. In terms of overcrowding of hospitals, we assume that there is
no overcrowding effect in the hospitals that could elevate the IFR even further.

6In the case of SARS, the difference between the case fatality rate and the infection fatality rate is small.
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FIGURE B.3. Comparing the three different flu scenarios with a low value of a statistical life as-
sumption.

Results SARS Figure B.6 shows the evolution of the SARS epidemic in the myopic mar-
ket allocation, the rational-expectations competitive equilibrium, and the social plan-
ner’s allocation under the assumption that a cure arrives after one year exactly.7 Again,
the epidemic under the myopic market allocation is close to standard SIR dynamics.
Many people rapidly get infected. In the case of rational expectations, the behavior is
qualitatively different. SARS is dangerous enough to make people so scared of being in-
fected that they stay away from infectious activities voluntarily to a high extent.

A social planner would lower the amount of infectious activities even more. In the
case of a social planner, the epidemic is not allowed to take off at all, as Figure B.6c
shows (we did not forget to plot the curve in this graph!).

As Figure B.7 shows, the results from the three scenarios are very different. The death
toll is high in the myopic scenario, as expected. In the scenario with rational expecta-

7We only show the results for a low value of a statistical life, results from assuming a high value of a
statistical life are very similar.
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FIGURE B.4. Comparing the three different flu scenarios with a high value of a statistical life
assumption.

tions, the number of deaths is reduced by more than 90%, and the social planner would
reduce the number of deaths even more, as shown in Figure B.7a.

Figures B.7b and B.7c highlight the difference in strategy taken by a social plan-
ner compared to the rational-expectations equilibrium. A social planner would quickly
lower the amount of infectious activities to get the epidemic under control, and would
thereafter not have to reduce the activities as much. In the rational-expectations com-
petitive equilibrium people would carry on with their activities until the number of in-
fected is too high in the economy. Then people become afraid of becoming infected,
and reduce their activities. Hence, in this scenario, the effective reproduction number is
around 1 all the time for the rational expectation equilibrium. The annual drop in output
in the rational-expectations scenario is 26.2 percent, which should be compared to the
social-planner scenario, in which it is 23.9 percent. Thus, the social planner achieves not
only less deaths, but also a smaller drop in output, by setting in “lock-down” measures
early, and by doing so getting the epidemic under control at an early stage.
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(a) The evolution of a seasonal flu under the myopic
market allocation.
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(b) The evolution of a seasonal flu in rational-
expectations competitive equilibrium.
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(c) The evolution of a seasonal flu under the social
planner’s allocation.

FIGURE B.5. The evolution of a seasonal flu under the social planner’s allocation and the two
different market allocations for the low value of a statistical life assumption.

The same type of qualitative effect, that the effective reproduction number hovers
around 1 in a rational expectations scenario, is also reported by Farboodi et al. (2021)
and Bognanni et al. (2020). The intuition behind the result is as follows. On one hand,
the precautionary behavior is increasing in the infection risk, which is increasing in the
number of infected. On the other hand, the number of infected is decreasing in the
strength of the precautionary response. The infection rate therefore stabilizes around
a level which is consistent with the precautionary behavior.

In our calibration of the covid-19 epidemic, we do not find that the effective re-
production number stabilizes around 1 in the rational-expectations competitive equi-
librium. Including age heterogeneity in the model is important for our result. For the
young, the risk of a covid infection does not provide a sufficiently strong motive for a
precautionary response to stabilize the infection rate.
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(a) The evolution of a SARS epidemic under the my-
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(b) The evolution of a SARS epidemic under the ra-
tional expectations competitive equilibrium.
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(c) The evolution of a SARS epidemic under the so-
cial planner’s allocation.

FIGURE B.6. The evolution of a SARS epidemic under the social planner’s allocation and the two
different market allocations.
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FIGURE B.7. Comparing the three different SARS scenarios.
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